The central selling point of qubit-based quantum processors is that they can supposedly solve certain types of tasks much faster than a classical computer. This comes however with the major complication of quantum computing being ‘noisy’, i.e. affected by outside influences. That this shouldn’t be a hindrance was the point of an article published last year by IBM researchers where they demonstrated a speed-up of a Trotterized time evolution of a 2D transverse-field Ising model on an IBM Eagle 127-qubit quantum processor, even with the error rate of today’s noisy quantum processors. Now, however, [Joseph Tindall] and colleagues have demonstrated with a recently published paper in Physics that they can beat the IBM quantum processor with a classical processor.
This is a companion discussion topic for the original entry at https://hackaday.com/2024/04/12/beating-ibms-eagle-quantum-processor-on-an-ising-model-with-a-classical-tensor-network/